Pi-CO₂ Aqueous CO₂ Capture Process

A • Increased solubility in water of CO₂ relative to N₂ under hydrostatic pressure and lower temperature

B • H₂O, SOx, NOx, Hg⁰ removal during compression

C • Energy recovery

- **1.** Capture = ~ 0.20 MWe /metric ton CO_2
- **2.** Capture + Product Compression = ~0.25 MWe / metric ton CO₂
- **3.** With internal combustion of fuel with residual $O_2 = \sim 0.10$ MWe /metric ton CO_2

Example of a coal fired power plant for reference:
~1 MWe of electricity produced = ~1 metric ton of CO₂

π PI-INNOVATION Partnering in Innovation, Inc.

1 An innovative CO₂ capture system:

- Post-Combustion CO₂ Capture
- In-Process Pre-Treatment removal of S0x, N0x, and vaporized mercury (Hg)
- Heat and Compression Energy Recovery
- Use of Hydrostatic Pressure of a Water Column - to increase the solubility of CO₂
- Simple Closed Loop System maximized CO₂
 mass-transfer in an absorber/desorber, CO₂ enrichment and water circulation supported by pressure swing
- Low Risk no specialty materials, no moving parts subsurface, ease in testing & process scaling.

Innovations:

A Solubility difference between CO_2 and N_2 in water maximized in a water column, water is the only physical solvent used for CO_2 capture;

 \mathbf{B} H₂O, SOx, NOx, Hg⁰ removal during compression, no flue gas pretreatment is required;

C Energy recovery from pressurized N_2 rich stream combined with compression heat and optional internal combustion using residual O_2 ;

D Down-flow counter-current cascading absorber (over 90% capture with 8 stages);

E Desorber with CO₂ enrichment and gas lift/density pumping;

F Lower cost and energy demand compared to other technologies: no pretreatment of flue gas (SOx, NOx, Hg removed by process), no expensive chemicals, and no chemical degradation waste.

D • 8 Stage Absorber

