confidential document

Techno-economic feasibility and operational constraints of a geothermal loop including a CO₂ dissolution facility

Techno-economic feasibility and operational constraints of a geothermal loop including a CO₂ dissolution facility

Final Report

BRGM/RP-65134-FR

September 2015

Study carried out as part of the CO₂-DISSOLVED project,

funded by the ANR (agreement ANR-12-SEED-0009-01)

M.-H. Beddelem, F. Bugarel, L. Hirsinger, and M. Pujol With the collaboration of G. Blount and K. O'Neil

Checked by:

Name: C. KERVEVAN

Approved by:

Name: E. LASNE

Date:

Signature:

Date:

Signature:

the quality management system of BRGM is certified according to ISO 9001 and ISO 14001.

Warning

This report is the result (deliverable D1.3) of part of the research work carried out in the framework of the CO_2 -DISSOLVED project, funded by the ANR (agreement ANR-12-SEED-0009-01).

This report remains **confidential** and its distribution is restricted to the project partners and to the ANR **until the end of the project (04/30/2016)**.

By the end of the project (from 05/01/2016), the status of this report will become public.

Keywords: CO_2 -DISSOLVED project, geothermal reservoirs, Dogger, Trias, CO_2 dissolution, dissolved CO_2 storage

In bibliography, this report should be cited as follows:

M.-H. Beddelem, F. Bugarel, L. Hirsinger and M. Pujol, with the collaboration of G. Blount and K. O'Neil. (2015). Technical-economic feasibility and operational constraints of a geothermal loop including a CO₂ dissolution facility. BRGM/RP-65134-FR. 61 p., 21 illus., 0 ann.

© BRGM, 2015. No part of this document may be reproduced without the prior permission of BRGM.

Synopsis

This report is the deliverable D1.3 of the CO₂-DISSOLVED project. This project is funded by the ANR (French National Research Agency) in the framework of the 2012 call for proposals of the SEED program (acronym – in French – for Energy Efficient and Decarbonized Systems). The CO₂-DISSOLVED project proposes to assess the feasibility of a novel CO₂ injection strategy in deep saline aquifers, combining injection of dissolved CO₂ (instead of supercritical CO₂) and recovery of geothermal heat from the extracted brine.

The combined CO₂ injection and geothermal heat exchange approach relies on:

- low tonnage industrial CO₂ emitters (ca. 10-130 kt/yr) which would be compatible with a single geothermal doublet installation, accounting for solubility limits of CO₂ in brine.
- a new low-cost patented CO₂ capture and dissolution technology provided by Partnering in innovation, our American partner.
- a "typical" geothermal doublet system, used for both CO₂ injection and recovery of heat from the extracted brine.

This study focuses on:

- a technical and economic description of the geothermal doublet technology which is commonly used in the Paris Basin to extract heat from the Dogger geothermal aquifer. As such, the Dogger aquifer is the most used low enthalpy geothermal aquifer for district heating around the world.
- a description of the dissolved CO₂ injection system.
- combining dissolved CO₂ injection with a typical geothermal loop, which implies adaptation of both technologies. Among the adaptations, work has been done more particularly on the dissolved CO₂ injection facility itself, on corrosion-resistant materials and cements, and on the well design.
- the technical feasibility study is completed with indicative investment and operating costs, and also with the potential constraints that are specific to the project.